Variational inequality approach to enforce the non-negative constraint for advection-diffusion equations
نویسندگان
چکیده
Predictive simulations are crucial for the success of many subsurface applications, and it is highly desirable to obtain accurate non-negative solutions for transport equations in these numerical simulations. To this end, optimization-based methodologies based on quadratic programming (QP) have been shown to be a viable approach to ensuring discrete maximum principles and the non-negative constraint for anisotropic diffusion equations. In this paper, we propose a computational framework based on the variational inequality (VI) which can also be used to enforce important mathematical properties (e.g., maximum principles) and physical constraints (e.g., the non-negative constraint). We demonstrate that this framework is not only applicable to diffusion equations but also to non-symmetric advection-diffusion equations. An attractive feature of the proposed framework is that it works with with any weak formulation for the advection-diffusion equations, including single-field formulations, which are computationally attractive. A particular emphasis is placed on the parallel and algorithmic performance of the VI approach across large-scale and heterogeneous problems. It is also shown that QP and VI are equivalent under certain conditions. State-of-the-art QP and VI solvers available from the PETSc library are used on a variety of steady-state 2D and 3D benchmarks, and a comparative study on the scalability between the QP and VI solvers is presented. We then extend the proposed framework to transient problems by simulating the miscible displacement of fluids in a heterogeneous porous medium and illustrate the importance of enforcing maximum principles for these types of coupled problems. Our numerical experiments indicate that VIs are indeed a viable approach for enforcing the maximum principles and the non-negative constraint in a large-scale computing environment. Also provided are Firedrake project files as well as a discussion on the computer implementation to help facilitate readers in understanding the proposed framework. A list of abbreviations ABC Arnold-Beltrami-Childress CG Conjugate Gradient method DG Discontinuous Galerkin GAL (Continuous) Galerkin GMRES Generalized Minimal Residual method KSP Krylov subspace iterative solver
منابع مشابه
Adaptive spacetime discontinuous Galerkin method for hyperbolic advection–diffusion with a non-negativity constraint
Applications where the diffusive and advective time scales are of similar order give rise to advection– diffusion phenomena that are inconsistent with the predictions of parabolic Fickian diffusion models. Non-Fickian diffusion relations can capture these phenomena and remedy the paradox of infinite propagation speeds in Fickian models. In this work, we implement a modified, frame-invariant for...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملOn enforcing maximum principles and achieving element-wise species balance for advection-diffusion-reaction equations under the finite element method
We present a robust computational framework for advective-diffusive-reactive systems that satisfies maximum principles, the non-negative constraint, and element-wise species balance property. The proposed methodology is valid on general computational grids, can handle heterogeneous anisotropic media, and provides accurate numerical solutions even for very high Péclet numbers. The significant co...
متن کاملA numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and non-negative constraint
We present a novel computational framework for diffusive-reactive systems that satisfies the non-negative constraint and maximum principles on general computational grids. The governing equations for the concentration of reactants and product are written in terms of tensorial diffusion-reaction equations. We restrict our studies to fast irreversible bimolecular reactions. If one assumes that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.08758 شماره
صفحات -
تاریخ انتشار 2016